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Abstract DIDS, NPPB, tannic acid (TA) and AO1 are

widely used inhibitors of Cl– channels. Some Cl– channel

inhibitors (NPPB, DIDS, niflumic acid) were shown to

affect phosphatidylserine (PS) scrambling and, thus, the

life span of human red blood cells (hRBCs). Since a

number of publications suggest Ca2? dependence of PS

scrambling, we explored whether inhibitors of Cl– channels

(DIDS, NPPB) or of Ca2?-activated Cl- channels (DIDS,

NPPB, TA, AO1) modified intracellular free Ca2? con-

centration ([Ca2?]i) and activity of Ca2?-activated K?

(Gardos) channel in hRBCs. According to Fluo-3 fluores-

cence in flow cytometry, a short treatment (15 min,

?37 �C) with Cl- channels inhibitors decreased [Ca2?]i in

the following order: TA [ AO1 [ DIDS [ NPPB.

According to forward scatter, the decrease of [Ca2?]i was

accompanied by a slight but significant increase in cell

volume following DIDS, NPPB and AO1 treatments. TA

treatment resulted in cell shrinkage. According to whole-

cell patch-clamp experiments, TA activated and NPPB and

AO1 inhibited Gardos channels. The Cl– channel blockers

further modified the alterations of [Ca2?]i following ATP

depletion (glucose deprivation, iodoacetic acid, 6-inosine),

oxidative stress (1 mM t-BHP) and treatment with Ca2?

ionophore ionomycin (1 lM). The ability of the Cl-

channel inhibitors to modulate PS scrambling did not

correlate with their influence on [Ca2?]i as TA and AO1

had a particularly strong decreasing effect on [Ca2?]i but at

the same time enhanced PS exposure. In conclusion, Cl–

channel inhibitors affect Gardos channels, influence Ca2?

homeostasis and induce PS exposure of hRBCs by Ca2?-

independent mechanisms.
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Introduction

Cl– channels can be subdivided into five subclasses as

follows: cAMP-, Ca2?-, cell volume-, voltage-activated

and ligand-gated. The subtypes differ in electrophysiolog-

ical and regulatory characteristics as well as their sensi-

tivity to Cl– channel blockers. The stilbene disulfonate

derivative 4,40-diisothio-cyanatostilbene-2,2-disulfonic acid

(DIDS) and the diphenylamine-2-carboxylate derivative

5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) are

known as universal nonspecific blockers that inhibit

Ca2?-activated and volume-regulated Cl– channels, anion

exchangers (DIDS) and K?-Cl– cotransporters (NPPB).

Gallotannins inhibit Ca2?-activated Cl– channels (CaCC)

(Namkung et al. 2010).

Cl– channel inhibitors have been shown to influence

apoptosis. In cortical neurons Cl– channel inhibitors (DIDS,

4-acetamido-40-isothiocyanatostilbene-2,20-disulfonic acid

[SITS], NPPB) were shown to prevent apoptotic cell

shrinkage and mildly attenuated cell death induced by

apoptotic stimuli (stauporine, C2-ceramide, serum depri-

vation) but had no effect on caspase activation and/or DNA
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fragmentation (Wei et al. 2004). In cardiomyocytes vol-

ume-sensitive Cl– channel blockers (IAA-94, DIDS) abol-

ished the apoptotic effects of doxorubicin through PI3K,

Akt and Erk 1/2 (d’Anglemont de Tassigny et al. 2008).

H2O2-induced apoptosis of cardiomyocytes was inhibited

by NPPB and DIDS, which decreased Cl– channel open

probability in those cells (Malekova et al. 2007). In eryth-

roleukemia cell lines NPPB prevented cisplatin-induced

apoptosis, inducing Cl– channel (CIC-3) expression (Xu

et al. 2011). Gallotannins are known to attenuate apoptosis

by inhibition of CaCCs (Namkung et al. 2010). In addition,

tannins were shown to inhibit a number of eukaryote protein

kinases: cAMP, cAK, CDPK, PKC, MLCK, MAPK and

epidermal growth factor tyrosine kinase (Wang et al. 1996;

Polya et al. 1995; Yang et al. 2006).

Similar to nucleated cells, mature human red blood cells

(hRBCs) are equipped with a set of different Cl– channels

that are mostly silent and nondetectable in patch-clamp

experiments of untreated and noninfected hRBCs (Dyrda

et al. 2010; Huber et al. 2005). In hRBCs, DIDS inhibits

the Cl– conductive pathway mediated by capnophorin

(band 3 protein) (Freedman et al. 1994), nonselective cat-

ion conductance sensitive to Cl– removal (Huber et al.

2001; Duranton et al. 2002) and shear-induced K?, Na?

and Ca2? permeability (Johnson and Tang 1993). Tannic

acid (TA) inhibits anion and nonelectrolyte (glycerol and

erythritol) permeability with an increase of erythrocyte

fragility (Hunter 1960). NPPB inhibits anion and cation

conductance via new permeability pathways in Plasmo-

dium parasitized hRBCs (Duranton et al. 2003).

Similar to apoptosis of nucleated cells, hRBCs may

enter suicidal cell death or eryptosis, which is characterized

by phosphatidylserine (PS) exposure, cell shrinkage and

membrane blebbing (Lang et al. 2008; Aiken et al. 1992;

Nguyen et al. 2011). Eryptosis is triggered by an increase

of [Ca2?]i (Lang and Qadri 2012). Eryptosis is stimulated

by a large number of small molecules (Abed et al. 2012a, b;

Bottger et al. 2012; Felder et al. 2011; Firat et al. 2012;

Ganesan et al. 2012; Gao et al. 2012; Ghashghaeinia et al.

2011, 2012; Jilani et al. 2012, 2013; Kucherenko and Lang

2012; Lang et al. 2011, 2012a, b; Lang and Qadri 2012;

Lupescu et al. 2012a, b, c; Polak-Jonkisz and Purzyc 2012;

Qadri et al. 2011a, b, c; Qian et al. 2012; Shaik et al. 2012a,

b; Vota et al. 2012; Weiss et al. 2012; Zappulla 2008;

Zbidah et al. 2012a, b; Zelenak et al. 2012b).

The rate of suicidal erythrocyte death is sensitive to

cellular K? content and cell volume (Lang et al. 2003;

Schneider et al. 2007). Accordingly, eryptosis of oxidized

and ionomycin-treated hRBCs is inhibited by the Cl– chan-

nel inhibitors NPPB and niflumic acid (Myssina et al. 2004).

The present study explored the impact of Cl– channel

inhibitors on Ca2? homeostasis, Gardos channel activity

and PS exposure in hRBCs.

Materials and Methods

Red Blood Cells

Banked hRBC concentrates were provided by the blood

bank of the University of Tübingen. Cells were washed

twice (1,2009g, 5 min, 22 �C) with NaCl Ringer bath

solution containing (in mM) 145 NaCl, 5 KCl, 2 MgCl2, 1

CaCl2, 5 glucose, 10 HEPES/NaOH (pH 7.4). Metaboli-

cally depleted cells were obtained according to the method

of Lew (1971) by incubation of control cells ([3 h,

?37 �C) in ATP-depleting medium consisting of (mM)

140 NaCl, 5 KCl, 10 HEPES, 6 iodoacetic acid, 6 inosine.

Oxidative stress was induced by 1 mM tert-butyl-hydro-

peroxide (t-BHP) treatment (15 min, ?37 �C). The Ca2?

ionophore ionomycin (1 lM; 15 min, ?37 �C) was applied

to enhance [Ca2?]i independently of the cell Ca2?-perme-

able channel activity. Cl– channel inhibitors (10 lM DIDS,

100 lM NPPB, 10 lM TA, 20 lM AO1) were added to

control cells or to hRBCs treated by oxidation, ATP

depletion or ionomycin.

Electrophysiology

Patch electrodes were made of borosilicate glass capillaries

(150 TF-10; Clark Medical Instruments, Lacey Green, UK)

using a horizontal DMZ puller (Zeitz, Martinsried,

Germany). Pipettes with high resistance from 17 to 20

MOhm were connected via an Ag–AgCl wire to the

headstage of an EPC 9 patch-clamp amplifier (HEKA,

Lambrecht/Pfalz, Germany). Data acquisition and data

analysis were controlled by a computer equipped with an

ITC 16 interface (Instrutech, Longmont, CO) and using

Pulse software (HEKA). For current measurements, RBCs

were held at a holding potential (Vh) of -10 mV; and 11

pulses of 200 ms duration (from -100 to ?100 mV) were

applied with ?20 mV increments. Currents were analyzed

by averaging the current values measured between 90 and

190 ms of each square pulse (current–voltage relationship)

and recorded at 22 �C in fast whole-cell, voltage-clamp

mode, with a 3 kHz low-pass filter. The applied voltages

refer to the cytoplasmic face of the membrane with respect

to the extracellular space. The offset potentials between

electrodes were zeroed before sealing. The liquid junction

potentials between bath and pipette solutions and between

bath solutions and the salt bridge (filled with NaCl bath

solution) were calculated according to Barry and Lynch

(1991). Data were corrected for liquid junction potentials.

After [10 GOhm seal formation, the membrane was rup-

tured by additional suction.

For whole-cell recording, the pipette solutions consisted

of (in mM) 145 KCl, 1.2 MgCl2, 1.15 CaCl2, 10 HEPES, 1

EGTA, 2 Na2ATP (pH 7.4 with KOH) or 120 K-gluconate,
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5 KCl, 1.2 MgCl2, 2 MgATP, 2 EGTA, 2.05 CaCl2, 10

HEPES (pH 7.4 with KOH). The NaCl Ringer bath solution

contained (in mM) 145 NaCl, 5 KCl, 2 MgCl2, 1 CaCl2, 5

glucose, 10 HEPES/NaOH (pH 7.4). In the experiments

where gluconate pipette solution was combined with glu-

conate bath solution, the latter contained (in mM) 150

Na-gluconate, 5 mM K-gluconate, 5 glucose, 10 HEPES/

NaOH (pH 7.4).

Cells with pronounced stable activity of Gardos chan-

nels were acutely perfused with the bath solutions con-

taining Cl– channel inhibitors (10 lM DIDS, 100 lM

NPPB, 10 lM TA, 20 lM AO1, final concentrations). At

the end of each experiment the SK4 channel blocker

TRAM-34 (1 lM) was added.

Chemicals (NPPB, DIDS, TA, TRAM-34) were

obtained from Sigma (Taufkirchen, Germany) and were of

the highest grade available. AO1 (De La Fuente et al. 2008)

was a kind gift of Dr. Karl Kunzelmann (University of

Regensburg, Regensburg, Germany). DMSO was used as a

solvent for AO1, NPPB and TRAM-34. TA and DIDS were

dissolved in deionized, purified water.

Intracellular Ca2? and Forward Scatter

Experiments were performed with native, ATP-depleted,

t-BHP-oxidized or ionomycin-treated hRBCs (see above) in

the presence or absence of the Cl– channel inhibitors. Cells

(0.4 % suspension) were washed in the appropriate media

(with or without the corresponding Cl– channel inhibitor)

containing 5 mM CaCl2 and loaded with 2 lM Fluo-3/AM

(Calbiochem, Bad Soden, Germany). Then, cells were

incubated at 37 �C for 20 min, washed once and resus-

pended in 5 mM Ca2?-containing Ringer/ATP-depleting

bath medium (with or without the corresponding Cl– channel

inhibitor). Cells were analyzed by forward scatter, and Fluo-

3 intensity was measured in fluorescence channel FL-1 with

an excitation wavelength of 488 nm and an emission

wavelength of 530 nm.

Phosphatidylserine Exposure

Cells (0.4 % suspension) were prepared as described above

and stained with Annexin V-Fluos (Roche, Mannheim,

Germany) at a 1:50 dilution in 5 mM Ca2?-containing

Ringer/ATP depleting bath medium in the presence or

absence of 10 lM TA or 20 lM AO1. After 20 min,

samples were washed once and resuspended in 5 mM

Ca2?-containing Ringer/ATP depleting medium (with or

without 10 lM TA and 20 lM AO1) and measured by

flow-cytometric analysis (FACS-Calibur; Becton Dickinson,

Heidelberg, Germany). Annexin V fluorescence intensity

was measured in fluorescence channel FL-1 with an

excitation wavelength of 488 nm and an emission wave-

length of 530 nm.

Statistics

Data are expressed as arithmetic means ± SEM, and the

paired two-tailed t test was employed as appropriate, with

p \ 0.05 considered statistically significant.

Results

In the present study we tested the most widely used Cl–

channel inhibitors (DIDS, NPPB) and CaCC inhibitors

(DIDS, NPPB, TA, AO1). We first checked whether a short

treatment with Cl– channel inhibitors affected Ca2?

homeostasis in hRBCs. Exposure of the cells for 15 min to

10 lM DIDS, 100 lM NPPB, 10 lM TA or 20 lM AO1

resulted in a decrease of cytosolic Ca2? ([Ca2?]i). The

potency of the Cl– channel inhibitors for [Ca2?]i reduction

was TA [ AO1 [ DIDS [ NPPB (Fig. 1a). A decrease in

[Ca2?]i (observed for AO1-, DIDS- and NPPB-treated

cells) was accompanied by a slight (*5 %) but significant

increase of cell volume, pointing to a Ca2?-dependent

decline of basal Gardos channel activity. In contrast, vol-

ume decreased following treatment with TA, suggesting

activation of the Gardos channel even though TA treatment

resulted in an *50 % decrease of [Ca2?]i compared to

untreated hRBCs (Fig. 1b).

Whole-cell patch-clamp experiments were performed to

explore the effect of the Cl– channel blockers on the Gar-

dos channel activity. Since the basal activity of the Gardos

channels in untreated hRBCs is low due to low [Ca2?]i, we

added CaCl2 to K?-containing pipette bath solutions. As

shown in Fig. 2a, b, the outward current due to K? efflux

via Ca2?-activated K? channels was increased in the cells

loaded with Ca2? (31 lM intracellular free Ca2?) upon

acute exposure to 10 lM TA. The same effect was

observed when intra- and extracellular Cl– was substituted

for gluconate. Perfusion of the cells with the SK4 channel

inhibitor TRAM-34, followed by TA treatment, blocked

the outward current (Fig. 2c, d). Thus, we conclude that

short exposure of hRBCs to 10 lM TA induced an increase

(*30 and *96 % for Cl– and gluconate bath media,

respectively) in Gardos channel activity.

Acute 10 lM DIDS (dissolved in Cl–-containing bath

medium) was followed by an increase (up to *35 %) in

Gardos channel activity (Fig. 3a, b). However, no effect of

DIDS was observed when Cl– was eliminated from the bath

media (Fig. 3c, d). In contrast, NPPB and AO1 rapidly

inhibited the basal Gardos channel activity recorded in

hRBCs in both Cl– and gluconate Ca2?-containing pipette

solutions (Figs. 4, 5).
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The next series of experiments explored whether the Cl–

channel inhibitors affected [Ca2?]i in metabolically

depleted (ATP-depleted), oxidized (t-BHP) and Ca2? ion-

ophore (ionomycin)-treated hRBCs. As shown in Fig. 6a,

Cl– channel inhibitors (TA, NPPB, AO1) significantly

blunted Ca2? uptake in hRBCs induced by ATP depletion.

The most effective inhibitors (TA, NPPB) blocked Ca2?

influx and reduced [Ca2?]i to levels lower than those

observed in untreated hRBCs. In contrast, DIDS enhanced

Ca2? uptake in hRBCs.

TA, DIDS and AO1 exerted a significant antioxidative

effect, blunting Ca2? influx induced by 1 mM t-BHP

treatment. DIDS was the most effective antioxidant among

the Cl– channel inhibitors tested (Fig. 6b).

The Cl– channel inhibitors further reduced the ionomy-

cin-induced increase in hRBCs [Ca2?]i (Fig. 6c). TA was

the most effective inhibitor of Ca2? entry in ionomycin-

treated hRBCs and decreased Ca2? uptake by more than 80

%. DIDS (*1 % blockage) was almost ineffective.

No correlation was found between the ability of Cl–

channel blockers to decrease Ca2? entry and to counteract

PS scrambling in hRBCs. AO1, which was highly effective

at decreasing [Ca2?]i and blocking Gardos channel activity,

actually enhanced PS exposure in hRBCs (Fig. 7a). TA,

which was most effective at reducing [Ca2?]i and increasing

Gardos channel activity, dramatically (*15-fold) increased

Annexin-V binding in hRBCs (Fig. 7b).

Discussion

Cl– channel inhibitors (DIDS, SITS, NPPB) were shown to

prevent apoptotic cell shrinkage and attenuate cell death

induced by apoptotic stimuli in cortical neurons and

cardiomyocytes (Wei et al. 2004; d’Anglemont de Tassigny

et al. 2008). Under the conditions of increased [Ca2?]i

(oxidation, Ca2? ionophore treatment) NPPB and niflumic

acid blunted PS scrambling and extended the life span of

hRBCs (Myssina et al. 2004). Since PS scrambling is regu-

lated by [Ca2?]i, we assumed that the antiapoptotic effect of

NPPB and niflumic acid was due to modulation of intracel-

lular Ca2? activity induced by Cl– channel inhibitors.

In the present study we show that the commonly used

Cl– blockers (DIDS, NPPB, TA, AO1) reduced [Ca2?]i

after a short treatment in physiological saline and blunted

Ca2? uptake in ATP-depleted, oxidized and ionomycin-

treated cells. Interestingly, the efficiency of the blockers for

[Ca2?]i reduction varied. TA was most effective at

decreasing hRBC [Ca2?]i upon acute application, ATP

depletion and ionomycin treatment, whereas DIDS dis-

played the highest protection against oxidation. In contrast

to the other Cl– channel blockers tested, DIDS increased

Ca2? uptake in metabolically depleted cells. Our results are

reminiscent of earlier observations (Diakov et al. 2001) that

DIDS activates two types of endogenous cation conduc-

tance in the cell membrane of Xenopus laevis oocytes.

Modulation of hRBC [Ca2?]i was not the only effect of

the Cl– channel blockers that might affect the erythrocyte

life span. We found that the blockers, acutely added to the

cells, modified the activity of the Gardos channels in

hRBCs. AO1, which was the second most effective at

decreasing [Ca2?]i, inhibited Gardos channel activity. In

contrast, TA, which again effectively reduced [Ca2?]i,

enhanced Gardos channel activity.

The tested Cl– channel blockers belong to different

chemical classes (Fig. 8) and may, in addition to Cl–

channel inhibition, exert different effects on hRBCs. Pos-

sibly, the blockers affect [Ca2?]i and Gardos channel

Fig. 1 Short exposure to Cl– channel inhibitors reduces [Ca2?]i and

affects hRBC volume. a Arithmetic means ± SEM of normalized

Fluo-3 fluorescence, reflecting cytosolic Ca2? concentration ([Ca2?]i)

in hRBCs (white bar, n = 11) exposed for a short time (15 min) to

10 lM tannic acid (TA; light gray bar, n = 6), 10 lM DIDS (gray

bar, n = 6), 100 lM NPPB (dark gray bar, n = 11) and 20 lM AO1

(black bar, n = 10). ***Significant difference from control (p \
0.001, t test). b As in a for normalized forward scatter that reflects

hRBC volume changes
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activity in hRBCs via modulating the activity of intracel-

lular enzymes. TA was shown to inhibit rat liver cAMP and

PKC kinases (Polya et al. 1995; Radcliffe et al. 1971) at

concentrations lower than those used for inhibition of CaCCs

(Namkung et al. 2010). The Gardos channels in hRBCs are

the hSK4 (KCNN4) isoform of the small-conductance

Ca2?-activated K? channel (Hoffman et al. 2003). The

channel activity is known to be modulated by cAMP and

PKA (Pellegrino and Pellegrini 1998) and by PKC (Del

Carlo et al. 2003; Rivera et al. 2002). Thus, the cell

shrinkage and enhanced PS exposure observed in

TA-treated hRBCs may be, at least in theory, a result of

Fig. 2 Tannic acid (TA)

activates the Gardos channel in

hRBCs. a Normalized (I60 mV)

current–voltage (I–V)

relationships of control hRBCs,

recorded with KCl pipette

solution, in NaCl-containing

Ringer bath solution before

(open triangles, n = 4) and

after (closed squares, n = 4)

acute application of 10 lM TA,

5 min incubation. b Whole-cell

patch-clamp recordings of the

Gardos channel activity of

hRBCs, recorded with KCl

pipette solution, in NaCl-

containing bath solution at the

beginning and after acute

application of 10 lM TA, 5 min

incubation. c Normalized (I60

mV) I–V relationships of control

hRBCs, recorded with

K-gluconate pipette solution, in

Na-gluconate bath solution

before (open triangles, n = 3),

after acute 5 min incubation

with 10 lM TA (closed
squares, n = 3) and after acute

1-lM TRAM-34 application.

d Whole-cell patch-clamp

recordings of the Gardos

channel activity of cells,

recorded with K-gluconate

pipette solution, in Na-

gluconate bath solution at the

beginning, after acute 5 min

incubation with 10 lM TA and

after acute 1 lM TRAM-34

application
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Ca2?-independent activation of the Gardos channels due to

PKC/cAMP modulation by TA.

PKC and PKA are also known to regulate nonselective

cation channel activity (Del Carlo et al. 2003; Saleh et al.

2009; Meves 2006). Activation of the voltage-independent,

nonselective, Ca2?-permeable, Cl–-sensitive cation

channels (Huber et al. 2001) may trigger PS exposure

in hRBCs (Lang et al. 2008). Removal of Cl– from

the bath medium (substitution with gluconate) inc-

reases [Ca2?]i and enhances PS scrambling in hRBCs

Fig. 3 DIDS does affect the

Gardos channel activity in

hRBCs. a, b As in Fig. 2a, b for

10 lM DIDS (n = 5). c, d As in

Fig. 2c, d for 10 lM DIDS

(n = 4)
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(Lang et al. 2003, 2008; Schneider et al. 2007). Thus, in

theory, blockage of Cl– fluxes could result in nonse-

lective cation channel activation and [Ca2?]i increase.

However, additional mechanisms must be taken into

consideration, such as impaired Ca2? extrusion and

increased intracellular Ca2? binding (e.g. calmodulin-

dependent).

It should be further considered that Ca2? sensitivity of PS

scrambling could be modified by ceramide (Lang et al.

2010). Moreover, eryptosis is sensitive to a variety of kinases

including AMP-activated kinase AMPK (Foller et al. 2009),

cGMP-dependent protein kinase (Foller et al. 2008), Janus-

activated kinase JAK3 (Bhavsar et al. 2011), casein kinase

(Kucherenko et al. 2012; Zelenak et al. 2012a), p38 kinase

Fig. 4 Acute NPPB application

blocks the Gardos channel in

hRBCs. a, b As in Fig. 2a, b for

100 lM NPPB (n = 4). c, d As

in Fig. 2c, d for 100 lM NPPB

(n = 3)
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(Gatidis et al. 2011), PAK2 kinase (Zelenak et al. 2011) as

well as sorafenib- (Lupescu et al. 2012d) and sunifinib-

(Shaik et al. 2012a) sensitive kinases.

Eryptosis participates in the pathophysiology of several

clinical conditions (Lang et al. 2008) including diabetes

mellitus (Calderon-Salinas et al. 2011; Maellaro et al. 2011),

renal insufficiency (Myssina et al. 2003), phosphate deple-

tion (Birka et al. 2004), hemolytic uremic syndrome (Lang

et al. 2006), sepsis (Kempe et al. 2007), fever (Foller et al.

2010), malaria (Bobbala et al. 2010; Lang et al. 2009;

Siraskar et al. 2010), sickle cell disease (Lang et al. 2009),

iron deficiency (Kempe et al. 2006), Wilson’s disease

Fig. 5 AO1 inhibits the Gardos

channel in hRBCs. a, b As in

Fig. 2a, b for 20 lM AO1

(n = 5). c, d As in Fig. 2c, d for

20 lM AO1 (n = 6)
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Fig. 6 Effect of Cl- channel inhibitors on [Ca2?]i in metabolically

ATP-depleted, oxidized and ionomycin-treated hRBCs. a Arithmetic

means ± SEM of normalized Fluo-3 fluorescence of control cells

after 3- to 7-h incubation with ATP-depletion medium (6 mM

inosine, 6 mM iodoacetic acid) in the absence (white bar, n = 12)

and presence (light gray bar, n = 8) of 10 lM tannic acid, 10 lM

DIDS (gray bar, n = 8), 100 lM NPPB (dark gray bar, n = 8) and

20 lM AO1 (black bar, n = 7). Control untreated cells are shown as

hatched bar (n = 12). ***Significant difference from ATP-depleted

cells in the absence of inhibitors (p \ 0.001). b Arithmetic means ±

SEM of normalized Fluo-3 fluorescence of 1 mM t-BHP (15 min,

37 �C) oxidized hRBCs in the absence (white bar, n = 6) and

presence (light gray bar, n = 6) of 10 lM tannic acid, 10 lM DIDS

(gray bar, n = 6), 100 lM NPPB (dark gray bar, n = 6) and 20 lM

AO1 (black bar, n = 7). Control untreated cells are shown as hatched
bar (n = 6). ***Significant difference from t-BHP oxidized hRBCs

(p \ 0.001). c Arithmetic means ± SEM of normalized Fluo-3

fluorescence of 1 lM ionomycin (15 min, 37 �C)-treated hRBCs in

the absence (white bar, n = 4) and presence (light gray bar, n = 4) of

10 lM tannic acid, 10 lM DIDS (gray bar, n = 4), 100 lM NPPB

(dark gray bar, n = 4) and 20 lM AO1 (black bar, n = 4). Control

untreated cells are shown as hatched bar (n = 4). ***Significant

difference from ionomycin-treated hRBCs in the absence of inhibitors

(p \ 0.001)

Fig. 7 Effect of tannic acid

(TA) and AO1 on

phosphatidylserine exposure in

hRBCs. a Arithmetic means ±

SEM of phosphatidylserine

exposure, measured as Annexin-

V binding, of hRBCs in the

absence of AO1 (white bar,

n = 6) and after a short

treatment (15 min, 37 �C) with

20 lM AO1 (black bar, n = 6).

b As in a for 10 lM TA–treated

cells (striped bar, n = 3).

***Significant difference from

control hRBCs (p \ 0.001)
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(Lang et al. 2007) and possibly metabolic syndrome (Zap-

pulla 2008).

In conclusion, all tested Cl–- and Ca2?-activated Cl–

channel blockers (DIDS, NPPB, TA, AO1) in the con-

centrations used for Cl– channel inhibition affect Gardos

channel activity, influence Ca2? homeostasis and induce

PS exposure by a Ca2?-independent mechanism in hRBCs.

Thus, none of them could be referred to a specific Cl–

channel blocker, and their side effects should be considered

when used for Cl–-transport studies or when these or

related substances are used in therapy.
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